Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076805

RESUMO

In non-small cell lung cancer (NSCLC) treatment, targeted therapies benefit only a subset of NSCLC, while radiotherapy responses are not durable and toxicity limits therapy. We find that a GABA(A) receptor activator, AM-101, impairs viability and clonogenicity of NSCLC primary and brain metastatic cells. Employing an ex vivo 'chip', AM-101 is as efficacious as the chemotherapeutic docetaxel, which is used with radiotherapy for advanced-stage NSCLC. In vivo , AM-101 potentiates radiation, including conferring a survival benefit to mice bearing NSCLC intracranial tumors. GABA(A) receptor activation stimulates a selective-autophagic response via multimerization of GABA(A) Receptor-Associated Protein (GABARAP), stabilization of mitochondrial receptor Nix, and utilization of ubiquitin-binding protein p62. A targeted-peptide disrupting Nix binding to GABARAP inhibits AM-101 cytotoxicity. This supports a model of GABA(A) receptor activation driving a GABARAP-Nix multimerization axis triggering autophagy. In patients receiving radiotherapy, GABA(A) receptor activation may improve tumor control while allowing radiation dose de-intensification to reduce toxicity. Highlights: Activating GABA(A) receptors intrinsic to lung primary and metastatic brain cancer cells triggers a cytotoxic response. GABA(A) receptor activation works as well as chemotherapeutic docetaxel in impairing lung cancer viability ex vivo . GABA(A) receptor activation increases survival of mice bearing lung metastatic brain tumors.A selective-autophagic response is stimulated by GABA(A) receptor activation that includes multimerization of GABARAP and Nix.Employing a new nanomolar affinity peptide that abrogates autophagosome formation inhibits cytotoxicity elicited by GABA(A) receptor activation.

2.
J Vis Exp ; (196)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37395566

RESUMO

Ion channels are critical for cell development and maintaining cell homeostasis. The perturbation of ion channel function contributes to the development of a broad range of disorders or channelopathies. Cancer cells utilize ion channels to drive their own development, as well as to improve as a tumor and to assimilate in a microenvironment that includes various non-cancerous cells. Furthermore, increases in levels of growth factors and hormones within the tumor microenvironment can result in enhanced ion channel expression, which contributes to cancer cell proliferation and survival. Thus, the pharmacological targeting of ion channels is potentially a promising approach to treating solid malignancies, including primary and metastatic brain cancers. Herein, protocols to characterize the function of ion channels in cancerous cells and approaches to analyze modulators of ion channels to determine their impact on cancer viability are described. These include staining a cell(s) for an ion channel(s), testing the polarized state of mitochondria, establishing ion channel function using electrophysiology, and performing viability assays to assess drug potency.


Assuntos
Neoplasias Encefálicas , Canalopatias , Humanos , Detecção Precoce de Câncer , Canais Iônicos/metabolismo , Microambiente Tumoral
3.
Front Immunol ; 14: 1143350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033961

RESUMO

Introduction: Severe COVID-19 is characterized by cytokine storm, an excessive production of proinflammatory cytokines that contributes to acute lung damage and death. Dexamethasone is routinely used to treat severe COVID-19 and has been shown to reduce patient mortality. However, the mechanisms underlying the beneficial effects of dexamethasone are poorly understood. Methods: We conducted transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with mild disease, and patients with severe COVID-19 with and without dexamethasone treatment. We then treated healthy donor PBMCs in vitro with dexamethasone and investigated the effects of dexamethasone treatment ion channel abundance (by RT-qPCR and flow cytometry) and function (by electrophysiology, Ca2+ influx measurements and cytokine release) in T cells. Results: We observed that dexamethasone treatment in severe COVID-19 inhibited pro-inflammatory and immune exhaustion pathways, circulating cytotoxic and Th1 cells, interferon (IFN) signaling, genes involved in cytokine storm, and Ca2+ signaling. Ca2+ influx is regulated by Kv1.3 potassium channels, but their role in COVID-19 pathogenesis remains elusive. Kv1.3 mRNA was increased in PBMCs of severe COVID-19 patients, and was significantly reduced in the dexamethasone-treated group. In agreement with these findings, in vitro treatment of healthy donor PBMCs with dexamethasone reduced Kv1.3 abundance in T cells and CD56dimNK cells. Furthermore, functional studies showed that dexamethasone treatment significantly reduced Kv1.3 activity, Ca2+ influx and IFN-g production in T cells. Conclusion: Our findings suggest that dexamethasone attenuates inflammatory cytokine release via Kv1.3 suppression, and this mechanism contributes to dexamethasone-mediated immunosuppression in severe COVID-19.


Assuntos
COVID-19 , Humanos , Leucócitos Mononucleares/metabolismo , Cálcio/metabolismo , Síndrome da Liberação de Citocina/tratamento farmacológico , Tratamento Farmacológico da COVID-19 , Citocinas/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico
4.
Cancers (Basel) ; 14(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892822

RESUMO

Competent antitumor immune cells are fundamental for tumor surveillance and combating active cancers. Once established, tumors generate a tumor microenvironment (TME) consisting of complex cellular and metabolic elements that serve to suppress the function of antitumor immune cells. T lymphocytes are key cellular elements of the TME. In this review, we explore the role of ion channels, particularly K+ channels, in mediating the suppressive effects of the TME on T cells. First, we will review the complex network of ion channels that mediate Ca2+ influx and control effector functions in T cells. Then, we will discuss how multiple features of the TME influence the antitumor capabilities of T cells via ion channels. We will focus on hypoxia, adenosine, and ionic imbalances in the TME, as well as overexpression of programmed cell death ligand 1 by cancer cells that either suppress K+ channels in T cells and/or benefit from regulating these channels' activity, ultimately shaping the immune response. Finally, we will review some of the cancer treatment implications related to ion channels. A better understanding of the effects of the TME on ion channels in T lymphocytes could promote the development of more effective immunotherapies, especially for resistant solid malignancies.

5.
Exp Biol Med (Maywood) ; 246(19): 2128-2135, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34649481

RESUMO

γ-aminobutyric acid or GABA is an amino acid that functionally acts as a neurotransmitter and is critical to neurotransmission. GABA is also a metabolite in the Krebs cycle. It is therefore unsurprising that GABA and its receptors are also present outside of the central nervous system, including in immune cells. This observation suggests that GABAergic signaling impacts events beyond brain function and possibly human health beyond neurological disorders. Indeed, GABA receptor subunits are expressed in pathological disease states, including in disparate cancers. The role that GABA and its receptors may play in cancer development and progression remains unclear. If, however, those cancers have functional GABA receptors that participate in GABAergic signaling, it raises an important question whether these signaling pathways might be targetable for therapeutic benefit. Herein we summarize the effects of modulating Type-A GABA receptor signaling in various cancers and highlight how Type-A GABA receptors could emerge as a novel therapeutic target in cancer.


Assuntos
Neoplasias/metabolismo , Receptores de GABA-A/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia , Ácido gama-Aminobutírico/metabolismo
6.
Front Pharmacol ; 12: 742862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512366

RESUMO

Programmed death receptor-1 (PD-1) and its ligand (PD-L1) interaction negatively regulates T cell function in head and neck squamous cell carcinoma (HNSCC). Overexpression of PD-1 reduces intracellular Ca2+ fluxes, and thereby T cell effector functions. In HNSCC patients, PD-1 blockade increases KCa3.1 and Kv1.3 activity along with Ca2+ signaling and mobility in CD8+ peripheral blood T cells (PBTs). The mechanism by which PD-L1/PD-1 interaction regulates ion channel function is not known. We investigated the effects of blocking PD-1 and PD-L1 on ion channel functions and intracellular Ca2+ signaling in CD8+ PBTs of HNSCC patients and healthy donors (HDs) using single-cell electrophysiology and live microscopy. Anti-PD-1 and anti-PD-L1 antibodies increase KCa3.1 and Kv1.3 function in CD8+ PBTs of HNSCC patients. Anti-PD-1 treatment increases Ca2+ fluxes in a subset of HSNCC patients. In CD8+ PBTs of HDs, exposure to PD-L1 reduces KCa3.1 activity and Ca2+ signaling, which were restored by anti-PD-1 treatment. The PD-L1-induced inhibition of KCa3.1 channels was rescued by the intracellular application of the PI3 kinase modulator phosphatidylinositol 3-phosphate (PI3P) in patch-clamp experiments. In HNSCC CD8+ PBTs, anti-PD-1 treatment did not affect the expression of KCa3.1, Kv1.3, Ca2+ release activated Ca2+ (CRAC) channels, and markers of cell activation (CD69) and exhaustion (LAG-3 and TIM-3). Our data show that immune checkpoint blockade improves T cell function by increasing KCa3.1 and Kv1.3 channel activity in HNSCC patients.

7.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525329

RESUMO

Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor. The current standard of care for GBM is the Stupp protocol which includes surgical resection, followed by radiotherapy concomitant with the DNA alkylator temozolomide; however, survival under this treatment regimen is an abysmal 12-18 months. New and emerging treatments include the application of a physical device, non-invasive 'tumor treating fields' (TTFs), including its concomitant use with standard of care; and varied vaccines and immunotherapeutics being trialed. Some of these approaches have extended life by a few months over standard of care, but in some cases are only available for a minority of GBM patients. Extensive activity is also underway to repurpose and reposition therapeutics for GBM, either alone or in combination with the standard of care. In this review, we present select molecules that target different pathways and are at various stages of clinical translation as case studies to illustrate the rationale for their repurposing-repositioning and potential clinical use.

8.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33060146

RESUMO

BACKGROUND: Immunotherapy has emerged as a promising treatment modality for head and neck squamous cell carcinoma (HNSCC). Pembrolizumab, an anti-programmed death 1 antibody, is an immunotherapy agent currently approved for metastatic HNSCC and curative intent clinical trials. Although clinical responses to pembrolizumab are promising, many patients fail to respond. However, it is well known that T cell cytotoxicity and chemotaxis are critically important in the elimination of HNSCC tumors. These functions depend on ion channel activity and downstream Ca2+ fluxing abilities, which are defective in patients with HNSCC. The purpose of this study was to elucidate the effects of pembrolizumab on potassium (K+) channel (KCa3.1 and Kv1.3) activity, Ca2+ fluxes, and chemotaxis in the cytotoxic T cells of patients with HNSCC and to determine their correlation with treatment response. METHODS: Functional studies were conducted in CD8+ peripheral blood T cells (PBTs) and tumor infiltrating lymphocytes (TILs) from patients with HNSCC treated with pembrolizumab. Untreated patients with HNSCC were used as controls. The ion channel activity of CD8+ T cells was measured by patch-clamp electrophysiology; single-cell Ca2+ fluxing abilities were measured by live microscopy. Chemotaxis experiments were conducted in a three-dimensional collagen matrix. Pembrolizumab patients were stratified as responders or non-responders based on pathological response (percent of viable tumor remaining at resection; responders: ≤80% viable tumor; non-responders: >80% viable tumor). RESULTS: Pembrolizumab increased K+ channel activity and Ca2+ fluxes in TILs independently of treatment response. However, in PBTs from responder patients there was an increased KCa3.1 activity immediately after pembrolizumab treatment that was accompanied by a characteristic increase in Kv1.3 and Ca2+ fluxes as compared with PBTs from non-responder patients. The effects on Kv1.3 and Ca2+ were prolonged and persisted after tumor resection. Chemotaxis was also improved in responder patients' PBTs. Unlike non-responders' PBTs, pembrolizumab increased their ability to chemotax in a tumor-like, adenosine-rich microenvironment immediately after treatment, and additionally they maintained an efficient chemotaxis after tumor resection. CONCLUSIONS: Pembrolizumab enhanced K+ channel activity, Ca2+ fluxes and chemotaxis of CD8+ T cells in patients with HNSCC, with a unique pattern of response in responder patients that is conducive to the heightened functionality of their cytotoxic T cells.


Assuntos
Cálcio/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Imunoterapia/métodos , Potássio/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Citotóxicos/metabolismo , Idoso , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais
9.
J Inherit Metab Dis ; 43(5): 1046-1055, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441337

RESUMO

Plasmalogens (Pls) are a class of membrane phospholipids which serve a number of essential biological functions. Deficiency of Pls is associated with common disorders such as Alzheimer's disease or ischemic heart disease. A complete lack of Pls due to genetically determined defective biosynthesis gives rise to rhizomelic chondrodysplasia punctata (RCDP), characterized by a number of severe disabling pathologic features and death in early childhood. Frequent cardiac manifestations of RCDP include septal defects, mitral valve prolapse, and patent ductus arteriosus. In a mouse model of RCDP, reduced nerve conduction velocity was partially rescued by dietary oral supplementation of the Pls precursor batyl alcohol (BA). Here, we examine the impact of Pls deficiency on cardiac impulse conduction in a similar mouse model (Gnpat KO). In-vivo electrocardiographic recordings showed that the duration of the QRS complex was significantly longer in Gnpat KO mice than in age- and sex-matched wild-type animals, indicative of reduced cardiac conduction velocity. Oral supplementation of BA for 2 months resulted in normalization of cardiac Pls levels and of the QRS duration in Gnpat KO mice but not in untreated animals. BA treatment had no effect on the QRS duration in age-matched wild-type mice. These data suggest that Pls deficiency is associated with increased ventricular conduction time which can be rescued by oral BA supplementation.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Condrodisplasia Punctata Rizomélica/tratamento farmacológico , Éteres de Glicerila/farmacologia , Plasmalogênios/biossíntese , Administração Oral , Animais , Arritmias Cardíacas/etiologia , Condrodisplasia Punctata Rizomélica/fisiopatologia , Suplementos Nutricionais , Modelos Animais de Doenças , Eletrocardiografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Éteres Fosfolipídicos/farmacologia
10.
Front Pharmacol ; 11: 143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184726

RESUMO

The limited ability of cytotoxic CD8+ T cells to infiltrate solid tumors and function within the tumor microenvironment presents a major roadblock to effective immunotherapy. Ion channels and Ca2+-dependent signaling events control the activity of T cells and are implicated in the failure of immune surveillance in cancer. Reduced KCa3.1 channel activity mediates the heightened inhibitory effect of adenosine on the chemotaxis of circulating T cells from head and neck squamous cell carcinoma (HNSCC) patients. Herein, we conducted experiments that elucidate the mechanisms of KCa3.1 dysfunction and impaired chemotaxis in HNSCC CD8+ T cells. The Ca2+ sensor calmodulin (CaM) controls multiple cellular functions including KCa3.1 activation. Our data showed that CaM expression is lower in HNSCC than healthy donor (HD) T cells. This reduction was due to an intrinsic decrease in the genes encoding CaM combined to the failure of HNSCC T cells to upregulate CaM upon activation. Furthermore, the reduction in CaM was confined to the plasma membrane and resulted in decreased CaM-KCa3.1 association and KCa3.1 activity (which was rescued by the delivery of CaM). IFNγ production, also Ca2+- and CaM-dependent, was instead not reduced in HNSCC T cells, which maintained intact cytoplasmic CaM and Ca2+ fluxing ability. Knockdown of CaM in HD T cells decreased KCa3.1 activity, but not IFNγ production, and reduced their chemotaxis in the presence of adenosine, thus recapitulating HNSCC T cell dysfunction. Activation of KCa3.1 with 1-EBIO restored the ability of CaM knockdown HD T cells to chemotax in the presence of adenosine. Additionally, 1-EBIO enhanced INFγ production. Our data showed a localized downregulation of membrane-proximal CaM that suppressed KCa3.1 activity in HNSCC circulating T cells and limited their ability to infiltrate adenosine-rich tumor-like microenvironments. Furthermore, they indicate that KCa3.1 activators could be used as positive CD8+ T cell modulators in cancers.

11.
Sci Rep ; 8(1): 631, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330525

RESUMO

Inactivation of voltage-gated Na+ channels (VGSC) is essential for the regulation of cellular excitability. The molecular rearrangement underlying inactivation is thought to involve the intracellular linker between domains III and IV serving as inactivation lid, the receptor for the lid (domain III S4-S5 linker) and the pore-lining S6 segements. To better understand the role of the domain IV S6 segment in inactivation we performed a cysteine scanning mutagenesis of this region in rNav 1.4 channels and screened the constructs for perturbations in the voltage-dependence of steady state inactivation. This screen was performed in the background of wild-type channels and in channels carrying the mutation K1237E, which profoundly alters both permeation and gating-properties. Of all tested constructs the mutation I1581C was unique in that the mutation-induced gating changes were strongly influenced by the mutational background. This suggests that I1581 is involved in specific short-range interactions during inactivation. In recently published crystal structures VGSCs the respective amino acids homologous to I1581 appear to control a bend of the S6 segment which is critical to the gating process. Furthermore, I1581 may be involved in the transmission of the movement of the DIII voltage-sensor to the domain IV S6 segment.


Assuntos
Cisteína/genética , Proteínas Musculares/genética , Mutação , Canais de Sódio/genética , Xenopus laevis/genética , Animais , Ativação Enzimática , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Musculares/química , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/química
12.
ChemMedChem ; 12(22): 1819-1822, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29045055

RESUMO

The lupin alkaloid sparteine is a well-known chiral diamine with a range of applications in asymmetric synthesis, as well as a blocker of voltage-gated sodium channels (VGSCs). However, there is only scarce information on the VGSC-blocking activity of sparteine derivatives where the structure of the parent alkaloid is retained. Building on the recent renewed availability of sparteine and derivatives we report herein how modification of sparteine at position 2 produces irreversible blockers of VGSCs. These compounds could be clinically envisaged as long-lasting local anesthetics.


Assuntos
Bloqueadores dos Canais de Sódio/farmacologia , Esparteína/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Estrutura Molecular , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/química , Esparteína/síntese química , Esparteína/química , Relação Estrutura-Atividade
13.
Mol Pharmacol ; 88(5): 866-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358763

RESUMO

The clinically important suppression of high-frequency discharges of excitable cells by local anesthetics (LA) is largely determined by drug-induced prolongation of the time course of repriming (recovery from inactivation) of voltage-gated Na(+) channels. This prolongation may result from periodic drug-binding to a high-affinity binding site during the action potentials and subsequent slow dissociation from the site between action potentials ("dissociation hypothesis"). For many drugs it has been suggested that the fast inactivated state represents the high-affinity binding state. Alternatively, LAs may bind with high affinity to a native slow-inactivated state, thereby accelerating the development of this state during action potentials ("stabilization hypothesis"). In this case, slow recovery between action potentials occurs from enhanced native slow inactivation. To test these two hypotheses we produced serial cysteine mutations of domain IV segment 6 in rNav1.4 that resulted in constructs with varying propensities to enter fast- and slow-inactivated states. We tested the effect of the LA lidocaine on the time course of recovery from short and long depolarizing prepulses, which, under drug-free conditions, recruited mainly fast- and slow-inactivated states, respectively. Among the tested constructs the mutation-induced changes in native slow recovery induced by long depolarizations were not correlated with the respective lidocaine-induced slow recovery after short depolarizations. On the other hand, for long depolarizations the mutation-induced alterations in native slow recovery were significantly correlated with the kinetics of lidocaine-induced slow recovery. These results favor the "dissociation hypothesis" for short depolarizations but the "stabilization hypothesis" for long depolarizations.


Assuntos
Anestésicos Locais/farmacologia , Lidocaína/farmacologia , Proteínas Musculares/antagonistas & inibidores , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Proteínas Musculares/fisiologia , Mutagênese , Ratos , Canais de Sódio/fisiologia , Relação Estrutura-Atividade
14.
Cell Physiol Biochem ; 36(3): 1049-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26112643

RESUMO

BACKGROUND/AIMS: Dysferlin plays a decisive role in calcium-dependent membrane repair in myocytes. Mutations in the encoding DYSF gene cause a number of myopathies, e.g. limb-girdle muscular dystrophy type 2B (LGMD2B). Besides skeletal muscle degenerative processes, dysferlin deficiency is also associated with cardiac complications. Thus, both LGMD2B patients and dysferlin-deficient mice develop a dilated cardiomyopathy. We and others have recently reported that dystrophin-deficient ventricular cardiomyocytes from mouse models of Duchenne muscular dystrophy show significant abnormalities in voltage-dependent ion channels, which may contribute to the pathophysiology in dystrophic cardiomyopathy. The aim of the present study was to investigate if dysferlin, like dystrophin, is a regulator of cardiac ion channels. METHODS AND RESULTS: By using the whole cell patch-clamp technique, we compared the properties of voltage-dependent calcium and sodium channels, as well as action potentials in ventricular cardiomyocytes isolated from the hearts of normal and dysferlin-deficient (dysf) mice. In contrast to dystrophin deficiency, the lack of dysferlin did not impair the ion channel properties and left action potential parameters unaltered. In connection with normal ECGs in dysf mice these results suggest that dysferlin deficiency does not perturb cardiac electrophysiology. CONCLUSION: Our study demonstrates that dysferlin does not regulate cardiac voltage-dependent ion channels, and implies that abnormalities in cardiac ion channels are not a universal characteristic of all muscular dystrophy types.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Proteínas de Membrana/deficiência , Miócitos Cardíacos/fisiologia , Canais de Sódio/metabolismo , Potenciais de Ação/fisiologia , Animais , Bário/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo T/genética , Cátions Bivalentes , Cátions Monovalentes , Disferlina , Feminino , Expressão Gênica , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Transporte de Íons , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Sódio/metabolismo , Canais de Sódio/genética
15.
J Biol Chem ; 289(31): 21770-81, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24947510

RESUMO

Despite the availability of several crystal structures of bacterial voltage-gated Na(+) channels, the structure of eukaryotic Na(+) channels is still undefined. We used predictions from available homology models and crystal structures to modulate an external access pathway for the membrane-impermeant local anesthetic derivative QX-222 into the internal vestibule of the mammalian rNaV1.4 channel. Potassium channel-based homology models predict amino acid Ile-1575 in domain IV segment 6 to be in close proximity to Lys-1237 of the domain III pore-loop selectivity filter. The mutation K1237E has been shown previously to increase the diameter of the selectivity filter. We found that an access pathway for external QX-222 created by mutations of Ile-1575 was abolished by the additional mutation K1237E, supporting the notion of a close spatial relationship between sites 1237 and 1575. Crystal structures of bacterial voltage-gated Na(+) channels predict that the side chain of rNaV1.4 Trp-1531 of the domain IV pore-loop projects into the space between domain IV segment 6 and domain III pore-loop and, therefore, should obstruct the putative external access pathway. Indeed, mutations W1531A and W1531G allowed for exceptionally rapid access of QX-222. In addition, W1531G created a second non-selective ion-conducting pore, bypassing the outer vestibule but probably merging into the internal vestibule, allowing for control by the activation gate. These data suggest a strong structural similarity between bacterial and eukaryotic voltage-gated Na(+) channels.


Assuntos
Anestésicos Locais/farmacologia , Ativação do Canal Iônico , Canais de Sódio/efeitos dos fármacos , Animais , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Conformação Proteica , Canais de Sódio/química , Canais de Sódio/genética , Xenopus laevis
16.
J Pharmacol Exp Ther ; 348(2): 346-58, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307198

RESUMO

Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Antagonistas de Aminoácidos Excitatórios/farmacologia , Alucinógenos/farmacologia , Ibogaína/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Substituição de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Citosol/metabolismo , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/química , Alucinógenos/efeitos adversos , Alucinógenos/química , Humanos , Concentração de Íons de Hidrogênio , Ibogaína/efeitos adversos , Ibogaína/química , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Proteínas Mutantes/agonistas , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Antagonistas de Entorpecentes/efeitos adversos , Antagonistas de Entorpecentes/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
Toxicol Appl Pharmacol ; 273(2): 259-68, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707769

RESUMO

The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 µM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias.


Assuntos
Comportamento Aditivo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Ibogaína/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/metabolismo , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/fisiologia , Feminino , Cobaias , Humanos , Ibogaína/química , Ibogaína/uso terapêutico , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/fisiologia , Miócitos Cardíacos/fisiologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...